1. Вершинина Е.А., Сафарова Г.Л. О применении методов математической статистики в клинических и экспериментальных исследованиях // Успехи геронтологии. 2019. Т. 32. № 6. С. 1052–1062.
2. Кропотов Ю.Д., Пронина М.В., Поляков Ю.И., Пономарев В.А. Функциональные биомаркеры в диагностике психических заболеваний: когнитивные вызванные потенциалы // Физиология человека. 2013. Т. 39. № 1. С. 14–25.
3. Моисеенко Г.А., и др. Классификация и распознавание изображений живой и неживой природы // Оптический журнал. 2015. Т. 82. № 10. С. 53–64.
4. Муравьева С.В., и др. Стимуляция работы зрительной системы с помощью когнитивной задачи в условиях виртуальной среды у пациентов с шизофренией и депрессией // Физиология человека. 2020. Т. 46. № 5. С. 27–36.
5. Муравьева С.В., и др. Исследование зрительных когнитивных вызванных потенциалов при шизофрении на ранних стадиях заболевания и их коррекция при помощи интерактивных виртуальных сред // Физиология человека. 2017. Т. 43. № 6. С. 24–36.
6. Шелепин Ю.Е., и др. Методы иконики и методы картирования мозга в оценке функционального состояния зрительной системы // Сенсорные системы. 2014. Т. 28. № 2. С. 61–75.
7. Щемелева О.В., и др. Электрофизиологические показатели деятельности мозга в процессе вербального и невербального взаимодействия собеседников // Физиология человека. 2019. T. 45. № 6. C. 16–26.
8. Abhishek P., et al. Lower P300 amplitudes for internally-generated events in patients with schizophrenia // Asian Journal of Psychiatry. 2018. V. 35. P. 67–71.
9. Andrade G.N., et al. Atypical visual and somatosensory adaptation in schizophrenia-spectrum disorders // Translational Psychiatry. 2016. V. 6. (5). № e804.
10. Behroozi M., Daliri M.R., Shekarchi B. EEG phase patterns reflect the representation of semantic categories of objects // Medical & biological engineering & computing. 2016. V. 54. № 1. P. 205–221.
11. Bodatsch M., Brockhaus-Dumke A., Klosterkötter J., Ruhrmann S. Forecasting psychosis by event-related potentials—systematic review and specific meta-analysis // Biological psychiatry. 2015. V. 77. № 11. P. 951–958.
12. Bosworth R.G., Dobkins K.R. Effects of prematurity on the development of contrast sensitivity: testing the visual experience hypothesis // Vision Research. 2013. V. 82. P. 31–41.
13. Carlson T., Tovar D.A., Alink A., Kriegeskorte N. Representational dynamics of object vision: The first 1000 ms // Journal of vision. 2013. V. 13 № 10. P. 1. doi: https://doi.org/10.1167/13.10.1.
14. Cerino R., Vergara S. How objects categorize the human brain: EEG and fMRI as analysis point // Res. Comput. Sci. 2020. V. 149. № 4. P. 43–55.
15. Clarke A., Devereux B.J., Randall B., Tyler L.K. Predicting the time course of individual objects with MEG // Cerebral Cortex. 2015. V. 25. № 10. P. 3602–3612.
16. Contini E.W., Wardle S.G., Carlson T.A. Decoding the time-course of object recognition in the human brain: From visual features to categorical decisions // Neuropsychologia. 2017. V. 105. P. 165–176.
17. Devia C., et al. EEG classification during scene free-viewing for schizophrenia detection // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2019. V. 27. № 6. P. 1193–1199.
18. Grootswagers T., Robinson A.K., Shatek S.M., Carlson T.A. Untangling featural and conceptual object representations // NeuroImage. 2019. V. 202:116083.
19. Karimi H., et al. Temporal dynamics of animacy categorization in the brain of patients with mild cognitive impairment // PloS One. 2022. V. 17. № 2. P. e0264058.
20. Khaligh-Razavi S.M., Cichy R.M., Pantazis D., Oliva A. Tracking the spatiotemporal neural dynamics of real-world object size and animacy in the human brain // Journ. of Cognitive Neuroscience. 2018. V. 30. № 11. P. 1559–1576.
21. Kiang M., Gerritsen C.J. The N400 event-related brain potential response: A window on deficits in predicting meaning in schizophrenia // International Journ. of Psychophysiology. 2019. V. 145. P. 65–69.
22. Li F., et al. The Time-Varying Networks in P300:_newline A Task-Evoked EEG Study // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2016. V. 24. № 7. P. 725–733.
23. Maher S., et al. Deficient cortical face-sensitive N170 responses and basic visual processing in schizophrenia // Schizophr. Res. 2016. V. 170. № 1. P. 87–94.
24. Martínez A., et al. Neural oscillatory deficits in schizophrenia predict behavioral and neurocognitive impairments // Frontiers in Human Neuroscience. 2015. V. 9. https://doi.org/10.3389/fnhum.2015.00371
25. Mudar R.A., et al. The effects of amnestic mild cognitive impairment on Go/No Go semantic categorization task performance and event-related potentials // Journal of Alzheimer's Disease. 2016. V. 50. № 2. P. 577–590.
26. Oribe N., et al. Progressive reduction of visual P300 amplitude in patients with first-episode schizophrenia: an ERP study // Schizophrenia bulletin. 2015. V. 41. № 2. P. 460–470.
27. Oribe N., et al. Early and late stages of visual processing in individuals in prodromal state and first episode schizophrenia: An ERP study // Schizophrenia Research. 2013. V. 146. P. 95–102.
28. Ozaki T, Toyomaki A, Hashimoto N, Kusumi I. Quantitative resting state electroencephalography in patients with schizophrenia spectrum disorders treated with strict monotherapy using atypical antipsychotics // Clin Psychopharmacol Neurosci. 2021. V. 19. № 2. P. 313–322.
29. Perrottelli A., et al. EEG-based measures in at-risk mental state and early stages of schizophrenia: a systematic review // Frontiers in Psychiatry. 2021. V. 12. https://doi.org/10.3389/fpsyt.2021.653642
30. Pokorny V.J., et al. Aberrant cortical connectivity during ambiguous object recognition is associated with schizophrenia // Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2021. V. 6. № 12. P. 1193–1201.
31. Salisbury D.F., et al. Neutral face and complex object neurophysiological processing deficits in long-term schizophrenia and in first hospitalized schizophrenia-spectrum individuals // International Journal of Psychophysiology. 2019. № 145. P. 57–64.
32. Sklar A.L., Coffman B.A., Salisbury D.F. Localization of early-stage visual processing deficits at schizophrenia spectrum illness onset using magnetoencephalography // Schizophrenia Bulletin. 2020. V. 46. №. 4. P. 955–963.
33. Tremblay E., et al. Delayed early primary visual pathway development in premature infants: high density electrophysiological evidence // PLoS One. 2014. V. 9 № 9. e107992.
34. Vaziri-Pashkam M., Taylor J., Xu Y. Spatial frequency tolerant visual object representations in the human ventral and dorsal visual processing pathways // Journ. of Cognitive Neuroscience. 2019. V. 31. № 1. P. 49–63.
Комментарии
Сообщения не найдены